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ABSTRACT
Arbitrary Pattern formation (APF ) by a swarm of mobile robots is a widely
studied problem in the literature. Many works regarding APF have been
proposedonplane and infinite grid bypoint robots. But in practical applica-
tion, it is impossible to design point robots. In Bose et al. [Arbitrary pattern
formation on infinite grid by asynchronous oblivious robots. Theor Com-
put Sci. 2020;815:213–227], the robots are assumed opaque fat robots but
the environment is plane. To the best of our knowledge, no work till now
ever considered the APF problem assuming opaque fat robots on infi-
nite grid where movements are restricted. In this paper, we have provided
a collisionless distributed algorithm and solvedAPF using 9 colours.
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1. Introduction

Nowadays, the distributed system is gaining popularity among researchers due to its many positive
aspects. Designing a centralised system and also maintaining its robustness is not at all cost-effective.
But these factors can be handled easily and effectively in a distributed system. Swarm robotics is an
example of such distributed system. In swarm robotics, more than one robot is considered in an envi-
ronment (plane, network etc.). The robots are considered to be autonomous (i.e. they do not have
any central control), homogeneous (i.e. all robots execute the same algorithm) and identical (they are
not indistinguishable by their physical appearance). Before the study of swarm robotics, designing a
robot to do a specific task was costly as it would have neededmany strong capabilities. But designing
a swarm of robots is cheaper than using such robot with many capabilities as the goal now become
to design the robots with minimal capabilities such that they can do the same task autonomously.
Amongmany applications of swarm robotsmilitary operations, border surveillance, cleaning of a large
surface, rescue operations, disaster management etc. are the ones that use the swarm robots vividly
in present days. So, it is evident why swarm robotics has gained such popularity in the industry and
among researchers in the current scenario.

Amongmany problems (eg. gathering, scattering, exploration) Arbitrary Pattern Formation (APF )
is a classical problem in the field of swarm robotics. In this problem, a swarm of robots which are
deployed in an environment (plane, graph etc.), need to form an already decided pattern which is
given as input to the robots. The robots can move freely in the plane but in the case of a graph, they
always move through an edge of the graph. There are mainly four models of robots depending upon
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their capabilities. These models are OBLOT ,FST A,FCOM and LUMI . In all of these models,
robots are considered to be autonomous, homogeneous, identical and anonymous (i.e. the robots do
not have any unique identifiers). In the OBLOT model, the robots are considered to be oblivious
(i.e. the robots do not have any persistent memory to remember any previous state) and silent (i.e.
the robots do not have any means of communication among themselves). In the FST Amodel, the
robots are silent but not oblivious. In theFCOMmodel, the robots are oblivious but not silent. And
in theLUMImodel, the robots are neither silent nor oblivious. There aremanyworks ofAPF which
has considered theOBLOT model in literature [1–5].

Activation time of the robots plays an important role to design algorithms for a swarm of robots. It
is assumed that a scheduler controls the activation of robots during the execution of any algorithm.
Mainly, there are three types of schedulers that have been considered in many previous works. These
schedulers are FSYNC or a fully synchronous scheduler, SSYNC or a semi-synchronous sched-
uler andASYNC or an asynchronous scheduler. In the case of aFSYNC scheduler, time is divided
into global rounds of the same duration and each robot is activated at the beginning of each round.
SSYNC scheduler is a more general version of the FSYNC scheduler. In the case of the SSYNC
scheduler, time is divided into global rounds of the same duration as it has been done for FSYNC
scheduler. But at the beginning of each round, the set of activated robots can be a proper subset of
the set of all robots (i.e. all robots may not get activated at the beginning of each round). Now, in the
case of theASYNC scheduler, there is no sense of global rounds. Any robot can get activated at any
time. So, theASYNC scheduler is more general and realistic among all the scheduler models.

In any model, the robots can be considered as transparent or opaque. In the case of transparent
robots, a robot can see another robot even if there are other robots between them. But in the case of
opaque robots, a robot can not see another robot if there are other robots between them. There are
manyworks where both thesemodels have been considered [1–9]. Opaque robots can be considered
to be dimensionless (i.e. point robots) [2–5,9–13] or they can have some dimension (i.e. fat robots) [1].
In the literature onAPF , there aremanyworkswhichhave considered the robots to bedimensionless
(i.e. point robots) and opaque [2,5]. But in practical application, it is impossible to design a point robot
as any physical object must have some dimensions. So in our work, we have considered the robots to
have somedimension. In fact,wehave considered the robots tobe adisc of radius ‘rad’, where rad ≤ 1

2 .
In this paper, we are interested in the problem of APF on an infinite grid where the robots are

considered to be fat and opaque and are placed on distinct vertices of the grid. The goal is to design
an algorithmA such that the robots after executingA form a pattern which is provided to each of the
robots as input. In this paper, we have provided such an algorithm that solves the problem ofAPF
under anASYNC scheduler.

1.1. Earlier works

The arbitrary pattern formation problemwas introduced first in [14] and it has become a popular topic
for research. It has been vastly studied under different types of environments and different types of
settings [1–8,10,13,15–18]. Inmost of theseworks, the basic assumptionwas that the robots are points
and they do not have obstructed visibility. But in a practical application-based scenario designing a
point robot is impossible because every physical object has a certain dimension. So in [1], authors have
considered a swarm of fat and opaque robots and shown that this swarm can form any given pattern
from any asymmetric configuration without collision under the LUMI model using 10 colours in
a plane. This luminous model was first introduced in [19] by Peleg. The visible lights can be used as
a means of communication and persistent memory. Designing a collision-free algorithm in plane is
easier than handling collision in discrete domain. This is because, in plane the robots can move freely
in any direction avoiding other robots but in discrete domain, there can be only one single path to
reach from one point to another point. This is why many researchers became interested to study the
problem ofAPF in discrete domain. In [3], an algorithm forAPF has been provided for a swarm of
point robots on an infinite grid but considering full andUnobstructed visibility. Now in [5], considering
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obstructed visibility model the authors have shown that a circle can be formed on an infinite grid
from any initial configuration if the opaque point robots in the swarm have one-axis agreement and 7
colours. Then, in [6] authors have presented another algorithmwhere a swarmof opaque point robots
on an infinite grid can form the given pattern in finite time using one-axis agreement and 8 colours.
But none of these works considered fat robots on infinite grid and solve the problem ofAPF .

To the best of our knowledge, there is no work till now which has considered fat robots on infinite
grid and provided any algorithm for arbitrary pattern formation on the grid. So, in this paper, we have
considered a swarm of opaque fat robots on an infinite grid and provided an algorithm (APFFATGRID)
where the swarm can form a predefined given pattern on the grid using 9 colours.

1.2. Problem description and our contribution

This paper deals with the problem of arbitrary pattern formation on an infinite grid using luminous
opaque fat robots with 9 colours. The robots are considered to be a disk having a fixed radius ‘rad’,
which is less or equal to 1

2 . The robots manoeuvre in a LOOK-COMPUTE-MOVE (LCM) cycle under an adver-
sarial asynchronous scheduler. The robots are autonomous, anonymous, identical and homogeneous.
The robots only move to one of its four adjacent grid points and their movement is considered to be
instantaneous (i.e. a robot can only be seen on a grid point). The robots have one-axis agreement.
Here, it is assumed that the robots do not agree upon any global coordinate though all robots agree
on the direction and orientation of the x-axis. Initially, the centre of each robot is on a grid point of
the infinite grid and a target pattern is provided to each of them. The robots are needed to agree on a
global coordinate system and embed the target pattern according to the global coordinate and then
move to the target locations to form the target pattern.

The main difficulty of APF lies in the problem of Leader Election problem. For that, the initial
configuration is assumed to be asymmetric or there is at least one robot on some line of symme-
try. Even with this assumption, it is quite hard to elect a leader as the vision of the robots becomes
obstructed since the robots are opaque and fat. So, the main challenge of this problem is to elect
a leader depending on the local view of each robot. The algorithm described in this paper does so.
Another massive challenge of this problem is to avoid collision during themovement of robots on the
grid. Our algorithm handles this by providing sequential movement of the robots and for this purpose
LUMI model has been used.

The problem, we have considered in this paper, is very practical in nature. Restricted movement,
robots with dimension and obstructed visibility all these assumptions are verymuch practical in terms
of designing robots. The algorithm presented in this paper solves the APF on infinite grid with a
swarm of luminous, opaque and fat robots with finite time. A comparison table is provided below
which will help readers to compare our work to the previous such works.

Paper Environment Visibilty Robot Type #Colours

Bose et al. [3] Grid Unobstructed Point 0
Bose et al. [2] Plane Opaque Point 6
Kundu et al. [6] Grid Opaque Point 8
Bose et al. [1] Plane Opaque Fat 10
This paper Grid Opaque Fat 9

2. Model and definitions

2.1. Model

Grid: The infinite two-dimensional grid G is a weighted graph G = (V , E) such that each node v ∈ V
has four adjacent nodes v0, v1, v2 and v3 ∈ V and the edges vvi (mod 4) ∈ E is perpendicular to the edge
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vvi+1 (mod 4) ∈ E. Also, the weight of each edge e ∈ E is basically the length of the edge e which is
considered to be 1 unit in this work.

Robots: In this work, a set of n robots R = {r0, r1, . . . , rn−1} are considered to be autonomous, anony-
mous, homogeneous and identical. This means that the robots do not have any central control, they
do not have any unique identifiers such as IDs and they are indistinguishable by their physical appear-
ance. The robots are also considered to have some dimension, i.e. the robots are considered to be a
disk of radius ‘rad’ (rad ≤ 1

2 ) rather than points. The robots are deployed on a two-dimensional infi-
nite grid G, where each of them is initially positioned in such a way that their centre is on distinct grid
points of G. The robots are considered to have an agreement over the direction and orientation of
x-axis i.e, all the robots have an agreement over left and right but the robots do not have any agree-
ment over the y-axis. Also, they do not have knowledge of any global coordinate system other than
their agreement over the direction of x-axis. Here in this paper, we have considered the robots to have
light. A light of any robot can haveO(1) distinct colours. A robot r ∈ R can see the colour of its own
light and the colour of the lights of other robots that are visible to r. In this work, we have assumed
that the light of each robot has nine distinct colours namely off, terminal1, candidate, call,
moving1, reached, leader1, leader and done.

Look-Compute-Move cycles:A robot r ∈ R, when active, operates according to the LOOK-COMPUTE-MOVE

(LCM) cycle. In the LOOK phase, a robot takes the snapshot of the configuration to get the positions
represented in its own local coordinate system and the colours of the light of all other robots visible
to it. Then, r performs the computation phase where it decides the position of the adjacent grid point
where it will move next and changes the colour of its light if necessary depending on the input it
got from the LOOK phase. In the MOVE phase, r moves to the decided grid point or makes a null move.
The movements of robots are restricted only along grid lines from one grid point to one of its four
adjacent grid points. The movements of robots are assumed to be instantaneous in discrete domain.
Here,weassume that themovements are instantaneous, i.e. they are always seenongridpoints, not on
edges.

Scheduler:We assume that the robots are controlled by an asynchronous adversarial scheduler. That
implies the duration of the three phases LOOK, COMPUTE and MOVE are finite but unbounded. So, there is
no common notion of round for this asynchronous scheduler.

Visibility: The visibility of robots is unlimited but by the presence of other robots it can be obstructed.
A robot ri can see another robot rj if and only there is a point prj on the boundary of rj and pri on
the boundary of ri such that the line segment priprj does not intersect with any point occupied by
other robots in the configuration. Now, it follows from the definition that ri can see rj implies rj can
see ri.

Configuration: We assume that the robots are placed on the infinite two-dimensional grid G. Next
we define a function f : V → {0, 1}, where f (v) is the number of robots placed on a grid point v. Then
G together with the function f is called a configuration which is denoted by C = (G, f ). For any time
T ,C(T) will denote the configuration of the robots at T.

2.2. Notations and definitions

We have used some notations throughout the paper. A list of these notations is mentioned in the
following table.

Terminal Robot: A robot r is called a terminal robot if there is no robot below or above r onLV(r).
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L1 First vertical line on left that contains at least one robot.
LV (r) The vertical line on which the robot r is located.
LH(r) The horizontal line on which the robot r is located.
LI(r) The left immediate vertical line of robot r which has at least one robot on it.
RI(r) The right immediate vertical line of robot r which has at least one robot on it.
HOL (r) Left open half for the robot r.

HCL (r) Left closed half for the robot r (i.e. HOL (r) ∪ LV (r)).

HOB (r) Bottom open half for the robot r.

HCB (r) Bottom closed half for the robot r (i.e. HOB (r) ∪ LH(r)).

HOU(r) Upper open half for the robot r.

HCU(r) Upper closed half for the robot r (i.e. HOU(r) ∪ LH(r)).

K The horizontal line passing through themiddle point of the line segment between two robots with lightcandidate
or call or reached on the same vertical line.

lnext(r) The next vertical line on the right ofLV (r).
Hlast The lowest horizontal line having a robot with colour done.

Symmetry of a vertical line L w.r.t K: Let λ be a binary sequence defined on a vertical line L such
that ith term of λ is defined as follows:

λ(i) =
{
1 if ∃ a robot on the ith grid point from K ∩ L on the line L.

0 otherwise.

Since there are two ith grid points from K ∩ L on the line L (above K and below K), there are two such
values of λ, say λ1 and λ2. If λ1 = λ2, then L is said to be symmetric with respect to K. Otherwise, it is
said to be asymmetric with respect to K. Henceforth, whenever the symmetry of a line is mentioned, it
means the symmetry of the line with respect to K.

Dominant half: A robot r is said to be in the dominant half if for λ1 > λ2 (lexicographically) on
RI(r), r and the portion ofRI(r) corresponding to λ1 lie on same half-plane delimited by K.

3. The algorithm

Themain result of the paper is Theorem 3.1. The proof of the ‘only if’ part is the same as in the case for
point robots, proved in [2]. The ‘if’ part will follow from the algorithm presented in this section.

Theorem 3.1: For a set of opaque fat robots having one-axis agreement,APF is deterministically solv-
able if and only if the initial configuration is not symmetric with respect to a line K such that (1) K is parallel
to the agreed axis and (2) K is not passing through any robot.

For the rest of the paper, we shall assume that the initial configuration C(0) does not admit the
unsolvable symmetry stated in Theorem 3.1. Our Algorithm executes in two phases. In the first phase,
a leader is elected and in the second phase, the robots form the target pattern embedded on the grid
using the locationof the leader as anagreement to theoriginof aglobal coordinate system. Thephases
are described in detail in the following subsections.

3.1. Phase 1

Initially, at C(0) all the robots are on the grid G with colour off. Note that in C(0), there are at least
one and atmost two robots that see no robot on its left open half and no robot either above or below it
on the same vertical line (i.e. these robots are terminal on their own vertical line). These robots change
their colours to terminal1. A robot with colourterminal1 changes its colour tocandidate and
moves if it sees it has its left open half empty. Also, if a robot r with colour candidate is a singleton
in HC

L (r) and all robots inRI(r) are off, it changes its colour to leader1. Note that due to the asyn-
chronous scheduler, it might happen that r is a singleton in HC

L (r) with colour candidate and there
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is another robot r′ on RI(r) with colour terminal1. In this case, if r awakes, it does not change its
colour to leader1 as it does not see all robots onRI(r) have colour off. Also if r′ awakes, it sees r
with colour candidate in LI(r′) and turns its colour to off. In this scenario, r becomes singleton in
HC
L (r) and sees all robots on RI(r) have colour off. So, r changes its colour to leader1. Now con-

sider that both r and r′ are on the same vertical line LV(r) with colour candidate such that there
is no robot between LH(r) and LH(r′). Note that in this configuration, all robots onRI(r) (i.e.RI(r′))
have colour off. In this case, both r and r′ check the symmetry ofRI(r) with respect to the line K (i.e.
the horizontal line which is equidistant from both r and r′). IfRI(r) is not symmetric with respect to K,
then one of r or r′ whichever is on the dominant half changes the colour to leader1. On the other
hand, ifRI(r) is symmetric, both the robots r and r′ change their colours to call from candidate.
Now all the robots onRI(r) have colour off and all of them can see exactly two robots with colour
call on their left immediate line. Note that since all the robots onRI(r) can see both r and r′, all of
them also know the line K. Now if there is any robot on K, it changes its colour to leader1. Otherwise,
the robots onRI(r) (at least one and at most two robots) which are closest to K change the colours to
moving1. A robot with colour off onRI(r)which is not closest to K, changes its colour to moving1
when it sees another robotwith colourmoving1on the same vertical line. Note that after a finite time,
at least all robots either above or below K which are onRI(r) change their colours tomoving1 ifRI(r)
is symmetric with respect to K. Now suppose a robot with colour moving1 say r1, is terminal onRI(r).
Also, note that r1 can see at least one of r and r′ onLI(r1). Now, if r1 sees another robot r2 onLV(r1) and
no robot with colour reached onLI(r1), it moves vertically opposite to r2. Otherwise, if it is singleton
on LV(r1) and sees no robot with colour reached on LI(r1), it moves vertically according to its pos-
itive y-axis until there is no robot either in HC

U(r1) ∩ LI(r1) or in HC
B (r1) ∩ LI(r1) and then towards left

until it reachesLV(r). Nowwhen r or r′ with colour call sees all robots onRI(r) have colour off and
sees a robot with colour moving1 or reached on the same vertical line, then it changes its colour
to reached. Due to the asynchronous environment, it might happen that one of r or r′ does not see
a robot with colour moving1 on the same vertical line, but it is guaranteed that it will see a robot
with colour reached on the same vertical line after a finite time. So, r or r′ can change their colours to
reached if all robots onRI(r) have colour off and there is a robot on LV(r) with colour reached.
So after a finite time, both the robots with colour call change their colours to reached (when there
was no robot on K ∩RI(r)). Now a robot say r3 with colour moving1 on LV(r) moves to the left if all
robots onRI(r3) are with colour off and it can see a robot with colour reached on LV(r3). Due to
asynchrony, it may happen that r and r′ changed their colours to reached and after that a robot say
r4, onRI(r) changes its colour to moving1. Observe that in this case, the robot r4 changes its colour
to offwhenever it sees at least one robot with colour reached onLI(r4), otherwise the robots with
colour moving1 on LV(r) will not move left. So, after a finite time, all robots with colour moving1
on LV(r) move to L1 and at this moment r and r′ will be the only two robots with colour reached
on LV(r) that are terminal also. In this situation, r and r′ change their colours to candidate. Now
due to asynchrony, it may happen that r and r′ changed their colours to candidate and after that a
robot say r5, onRI(r) changes its colour to moving1. In this case, the robot r5 changes its colour to
offwhenever it sees at least one robotwith colourcandidate onLI(r5). Therefore, then r and r′ are
with colours tocandidate and all robots onRI(r)have colouroff. So, they again check the symme-
try of the newRI(r) repeating the whole process. Thus after a finite time, a robot with colour off or a
robot r or r′ with colour candidate whoever is on dominant half changes its colour to leader1. A
robot say rl with colourleader1 alwaysmoves to the left when it sees other robot inHC

L (rl)or lnext(rl),
no robot with colour call onLI(rl) and no robot with colour candidate onLV(rl).

Note that, a robotwith colourcall changes its colour tooff if it sees a robotwith colourleader1
on its right immediate line. Also, a robot with colour candidate changes the colour to off when
it sees a robot with colour leader1 on the same vertical line. rl moves to the left until it becomes
the singleton robot on the leftmost line of the configuration and there is no robot on lnext(rl) and then
moves according to its positive y-axis until either one ofHC

U(rl) andHC
B (rl) has no other robot. Note that
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Algorithm 1: APFFATGRID: Phase 1
1 Procedure PHASE1()

2 r←myselfLi is a horizontal line with i ≥ 2.Lr = horizontal line where r resides.
3 L1 = lowest horizontal line.
4 if r.light = off then
5 if there is no robot in HO

L (r), no robot with light leader1 inRI(r) ∪LV (r) and r is terminal onLV (r) then
6 r.light← terminal1
7 else if there are exactly two robots inLI(r) and their lights are call and r is closest to K then
8 if r is on K then
9 r.light = leader1

10 else
11 r.light = moving1
12 else if there is a robot with light moving1 inLV (r) then
13 r.light = moving1
14 else if r.light = terminal1 then
15 if there is no robot in HO

L (r) then
16 r.light← candidate
17 move left

18 else if there is a robot with light candidate inLI(r) then
19 r.light = off
20 else if r.light = candidate then
21 if r is singleton in HC

L (r) and all robots inRI(r) are off then
22 r.light← leader1
23 else if there is a robot with light candidate or call onLV (r), r is terminal onLV (r) and all robots inRI(r) are off then
24 ifRI(r) is symmetric with respect to K then
25 r.light = call
26 else
27 if r is in the dominant half then

28 r.light = leader1

29 else if there is a robot with light leader1 onLV (r) then
30 r.light = off
31 else if r.light = moving1 then
32 if there is at least one robot with light call and no robot with light reached inLI(r) and r is terminal onLV (r) then
33 if there is other robot both in HC

U(r) ∩LI(r) and HC
B (r) ∩LI(r) then

34 if there is a robot r′ onLV (r) then
35 move opposite to r′

36 else
37 move according to its positive y-axis

38 else
39 move left

40 else if there is a robot with light reached onLV (r) and all robots inRI(r) are off then
41 move left

42 else if there is at least one robot with light reached or candidate inLI(r) then
43 r.light = off
44 else if r.light = call then
45 if there is a robot with light moving1 or, reached onLV (r) and all robots inRI(r) are off then
46 r.light = reached
47 else if there is a robot with light leader1 inRI(r) then
48 r.light = off
49 else if r.light = reached then
50 if there is a robot with light reached or candidate onLV (r), r is terminal onLV (r) and all robots inRI(r) are off then
51 r.light = candidate
52 else if r.light = leader1 then
53 if there is other robot in HC

L (r) or lnext(r), no robot with light call inLI(r) and no robot with light candidate onLV (r) then
54 move left
55 else
56 if there is other robot both in HC

U(r) and HC
B (r) then

57 move vertically according to its positive y-axis
58 else
59 r.light = leader
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Figure 1. r1 is singleton robot onL1.

it may happen due to the asynchronous environment that another robot with colour candidate
moves to lnext(rl) while rl is on L1. In this case, when rl activates again it finds out it has non-empty
lnext(rl) and moves left again even it was moving vertically in the previous activation. In this situation,
when rl reaches a point where either one of HC

U(rl) and HC
B (rl) has no other robot, it changes its colour

to leader and Phase 1 ends.
The following Theorem 3.2 and Lemmas 3.3–3.15 justify the correctness of the Algorithm 1.

Theorem 3.2: For any initial configuration C(0), ∃T > 0 such that C(T) have exactly two robots with
light candidate or exactly one robot with lightleader1 in L1.

Proof: Observe that there can be at least one and at most two robots in C(0) such that they have
their left open half empty and are terminal onL1. Let there is only one robot r1, who hasHO

L (r1) empty
and is terminal onL1 (Figure 1). This implies r1 is singleton onL1. In this case, r1 changes its colour to
terminal1 at some time T ′ > 0 and eventually changes to leader1 at a time T > T ′.

Now let us consider the case where there are two robots r1 and r2 such that both r1 and r2 are
terminal onL1 inC(0). Now if any one of r1 or r2 awakes, it changes its colour to terminal1. A robot
with colour terminal1moves left after changing its colour to candidate if it has its left open half
empty. Due to asynchronous environment, the following cases may occur.

Case-I: Let us consider the case where r1 already changed its colour to candidate from
terminal1 and moved to L1 at a time T1 > 0 and r2 wakes after T1 (Figure 2). Then r2 remains with
colour off as it sees it is not onL1 anymore. Then r1 during the next activation sees it is singleton on
HC
L (r1) and all robots onRI(r1) have colour off. So, it changes its colour to leader1.
Case-II: Let us consider the case where r1 already changed its colour to candidate from

terminal1 and moved to L1 at a time T1 > 0 and r2 wakes before T1 and changes its colour to
terminal1 at a time T2 ≥ T1 (Figure 3). Now if again r1 wakes between the times T1 and T2 (in this
scenario T1 > T2), then it sees all robots onRI(r1) have colour off and r1 is singleton on HC

L (r1). So,
r1 changes its colour to leader1 and r2 does not change its colour as HC

L (r2) has other robots. Now
if r1 wakes at a time T3 where T3 > T2 and r2 has not woke again, then it does not change its colour to
leader1 as it sees r2 with colour terminal1 onRI(r1). Nowwhen r2 wakes again at a time T4 > T2,
it changes its colour to off as it sees r1 with colour candidate on LI(r2). Now when r1 wakes after
T4 again, it sees it is singleton on HC

L (r1) and have all robots with colour off onRI(r1) and so changes
its colour to leader1.

Case-III: Let us consider the case where r1 already changed its colour to candidate from
terminal1 and moved to L1 at a time T1 > 0 and r2 wakes before T1 and changes its colour to
terminal1 at a time T2 < T1. Now, let r2 wakes again at a time T3.
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Figure 2. r1 changes its colour to candidate and moves toL1 at time T1 and r2 wakes after time T1.

Figure 3. r1 changed its colour to candidate and moves to L1 at time T1 and r2 changes its colour to terminal1 at time
T2 ≥ T1.

Case-III(a): Now if T3 > T1, then even if r1 wakes again between T3 and T1, it sees r2 with colour
terminal1 on RI(r1). So, it does not change its colour to leader1. Now r2 at time T3 wakes and
sees r1 with colour candidate on LI(r2) and so changes its colour to off. Now ∃T4 such that r1
wakes at T4 > T3 and sees it is singleton on HC

L (r1) and have all robots onRI(r1) with colour off. So,
r1 changes its colour to leader1.

Case-III(b):Now if T3 = T1, then both r1 and r2 changes its colour tocandidate andmoves toL1.
In this case, there will be two robots with colour candidate onL1 (Figure 4). Case-III(c): Nowwhen
T3 < T1, it is similar as case-III(a).

Note that above all cases are exhaustive and in each case there is a time T > 0 such that in C(T),
there is either one robot with colour leader1 or two robots with colour candidate onL1.

�

Lemma 3.3: Any robot r with colour candidate or, call or, reached always can see all robots with
colour off inRI(r) (if exist) and vice versa.

Proof: Let us consider that there is exactly one robot r and no other robot is on LV(r). In this case, it
is obvious that r can see all robots including the robots with colour off onRI(r) and vice versa.
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Figure 4. r2 is with colour terminal1 and r1 changes its colour to terminal1 and both r1 and r2 move toL1 changing their
colour to candidate at the same time.

Figure 5. Area bounded by the quadrilateral p1p2p3p4 is convex.

Now let us consider that there are at least two robots r and r′ onLV(r)where colour of r and r′ can
be any one of candidate, call or, reached and r is above r′. Now there are two cases.

Case-I: There are other empty vertical lines between LV(r) and RI(r). In this case, let us take the
common tangent line1 of all robots onRI(r)which is parallel to the lineRI(r) and nearest toLV(r) and
similarly take the common tangent line2 of the robots on line LV(r) parallel to LV(r) and nearest to
RI(r). Let us denote the points where line1 touches the terminal robots onRI(r) as p1 and p2 respec-
tively (p1 is above p2) and the points where line2 touches r′ and r as p3 and p4 respectively. Now let
us draw a line segment say line3 = p4p1 and line4 = p3p2. Observe that the area bounded by the lines
line1, line2, line3 and line4 is a trapezoid which is a convex set containing no other robot (Figure 5). Let
r1 be any robot with colour off onRI(r). Let line1 touches the robot r1 at a point say P. Then the line
segments Pp3 and Pp4 contains no robot on them. So, each of r and r′ can see r1. Thus r and r′ can see
all robots with colour off onRI(r) and all robots with colour off can see both of r and r′.

Case-II: Next let there is no other vertical line between LV(r) andRI(r). Note that all robots with
colour off must be between the lines LH(r) and LH(r′). In this scenario, let us draw the common
tangent line1 of the robots onRI(r) which is parallel toRI(r) and nearest to LV(r). Let us denote the
pointswhere line1 touches the terminal robots onRI(r) asp1 andp2 (p1 is abovep2). Let us nowdenote
the points where boundary of r and r′ intersect the line LV(r) which is nearest to r′ and r respectively
as p4 and p3. Let us call the line segment p3p4 as line2, p4p1 as line3 and p3p2 as line4. Then the area
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Figure 6. Area bounded by the quadrilateral p1p2p3p4 is convex.

bounded by these four lines is convex and there is no robot inside this area. 0For any robot r1 onRI(r)
with colour off, let us denote the point where line1 touches r1 as P. Then both the line segment Pp3
and Pp4 do not contain any other robot (Figure 6). So, both r and r′ can see r1 and similarly r1 sees both
r and r′. Thus r and r′ can see all robots with colour off onRI(r) and all robots with colour off can
see both of r and r′.

So, we can conclude the lemma. �

Lemma3.4: If r1 andr2 be tworobotswithcolourcallorreachedorcandidateonthesamevertical
line, then any terminal robot r with colourmoving1 onRI(r1)(= RI(r2)) always can see at least one of r1
and r2.

Proof: Without loss of generality, let us assume that r1 is above r2 and r is above K (i.e. the horizontal
line which is equidistant from bothLH(r1) andLH(r2)). Also, let there is no other vertical line between
LI(r) and LV(r), otherwise with the same argument as Lemma 3.3 we can say that r can see both r1
and r2. Now there are three cases.

Case-I: r is belowLH(r1). In this case, by similar argument in Case-II of Lemma 3.3, we can conclude
that r can see both r1 and r2.

Case-II: r is onLH(r1). Let us draw the tangents of r, line1 parallel toLV(r) and nearest toLI(r) and
tangent of r1, line2 parallel toLV(r1) and nearest toRI(r1). Now let line1 touches r at point p1 and line2
touches r1 at point p2 (Figure 7). Since p1p2 does not contain any other robot, r can see r1. Note that
line1 and line2 can be same if the robots are of radius 1

2 . Now let line1 touches both r and r1 at a point
p. Hence r can see r1. Case-III: r is above LH(r1). In this case, we claim that if there is any other robot
with colour moving1 on LV(r), it must be below LH(r1). If possible let, there is another robot r′ on
LV(r) which is above LH(r1) but below LH(r) with colour moving1. Since a robot turns its colour to
moving1 fromoff, there exists a time T when r′ had colouroff. So, inC(T), r′must be locatedbelow
LH(r1). Now, r is already located onLV(r′) and above r′. So, if r′ is terminal, it moves opposite to r and
never reaches above LH(r1). And if r′ is not terminal, then it never moves until r moves left. So, if r is
aboveLH(r1)with colour moving1 and is terminal, then there is no other robot on the grid points on
LV(r) between LH(r) and LH(r1). Let the tangent of r which is parallel to LV(r) and nearest to LI(r)
touches r at point p1 and intersectsLH(r1) at p3. Also, boundary of r1 touches the lineLH(r1) at a point
nearest to LV(r) (say p2) (Figure 8). Since p1, p2 and p3 form a triangle and the area bounded by the
triangle is a convex set containing no other robot, r can see r1.

�

Lemma 3.5: A robot changes its colour to leader1 only from light candidate or off.
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Figure 7. r is onLH(r1).

Figure 8. r is aboveLH(r1).

Proof: From Algorithm 1, it follows directly that a robot can change its colour to leader1 only if it
was either with colour candidate or with colour off. �

Lemma 3.6: A robot with light leader1 always has empty grid point in its left.

Proof: If at some tome T > 0, there is only one robot say r, on L1 with colour candidate and no
robot with colour other than off onRI(r), then r changes its colour to leader1. Observe that since
r is onL1, it will have its left grid point empty.

Now, consider there are two robots r and r′ with colour candidate onLV(r) (i.e.LV(r′)). Now by
Lemma 3.5, it is evident that a robot with colour candidate or off can only change its colour to
leader1. So, let us consider these cases.

Case-I: Let a robot r1 with colour off changes its colour to leader1. That implies only r and r′ is
on LI(r1) having colour call and r1 is on K ∩RI(r). Note that if r and r′ are adjacent on LV(r), then
K can not be a horizontal line of the grid G. So, r and r′ are not adjacent onLV(r) (Figure 9). Now note
that even if there are robots other than r and r′ on LV(r) or, LI(r), they are not on or between the
line LH(r) and LH(r′). So, LH(r1) lies between LH(r) and LH(r′) and r1 is onRI(r). So, we can say that
LH(r1) ∩ HO

L (r1) is always empty. As r1 moves only on left until it becomes singleton on L1 and has
lnext(r1) empty, r1, the robot with light leader1 always has its left grid point empty.
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Figure 9. r1 has colour leader1 and hasLH(r1) ∩ HOL (r1) empty.

Figure 10. r is onL2 with colour leader1 and hasLH(r) ∩ HOL (r) empty.

Case-II: Without loss of generality, let r be the robot with colour candidate that changes the
colour to leader1. Note that, either r is onL1 or it is onL2. If r is onL1 then it finds its left grid point
is empty and moves to left and become singleton on L1. So, left grid point of r is empty. Now if r was
onL2 (Figure 10). ThenL1 ∩ LH(r) is empty as there are no robots between the lineLH(r) andLH(r′)
onLI(r). So, r canmove left and become singleton onL1. Hence r always has its left grid point empty.

�

Lemma 3.7: If a robot r with colour call does not see another robot with colour leader1 onRI(r),
then there is a time T when LV(r) will always have a robot with colour moving1 and two robots with
colour call inC(T).

Proof: r is a robot with colour call onLV(r). This impliesRI(r) is symmetric with respect to K, where
K is known because there is another robot say r′ onLV(r)with colour call or candidate. Note that
if r′ has colour candidate, it changes the colour to call after a finite time. In this situation, if there
is a robot say r1 on K ∩RI(r), then r1 changes its colour to leader1 from off. And also, r sees r1 on
RI(r). Since it is assumed that r is not seeing any robot with colour leader1 on RI(r), it is evident
that there is no robot on K ∩RI(r). In this scenario, the robots onRI(r) see that there are exactly two
robots r and r′ with colour call on left immediate vertical line. So, the robots on RI(r), which are
closest to K change their colours to moving1 upon activation and all the robots who can see a robot
with colour moving1 on their vertical line eventually change their colours to moving1. Observe that
in this way, after a finite time there will be at least one robot onRI(r)which has colour moving1 and
also will be terminal onRI(r). Let r2 be that robot. Now r2 will move vertically in one fixed direction
until at least one of HC

U(r) ∩ LI(r) and HC
B (r) ∩ LI(r) has no other robot and then it moves left toLV(r)
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Figure 11. Terminal robot onRI(r) see r with colour call and move according to the path shown by the arrow.

Figure 12. The robot with colourmoving1 reaches above r. In this moment,LV (r) has two robots r and r′ with colourcall and
one robot with colour moving1.

(Figure 11). Also, note that r and r′ do not change their colours until r2 reachesLV(r). So, after a finite
time say T, there will be a robot r2 with colour moving1 and two robots r and r′ with colour call on
LV(r) in C(T) (Figure 12).

�

Lemma 3.8: Duringmovement of robots with colour moving1 in Phase 1, no collision occurs.

Proof: A robot rwith colour moving1 can have two type of moves, horizontal to the left and vertical.
r moves vertically on LV(r) only when it sees at least one robot with colour call on LI(r). Note that
during vertical movement of r, no other robot on LV(r) moves vertically in the same direction as r.
This is because if another robot say r′ moves on LV(r), it must be terminal on LV(r) and has colour
moving1. But since r is already on LV(r), r′ moves opposite of r. So, as long as r moves vertically on
LV(r) no collision occurs. Note that r moves vertically in such a way such that at least one of HC

U(r) ∩
LI(r) orHC

B (r) ∩ LI(r) has no other robot and then itmoves left towardsLI(r) (i.e. the same vertical line
were the robot with colour call is located). Now let there is a non-terminal robot r1 which is nearest
to r and below r on LV(r) with colour moving1. Now observe that r1 only moves when r reaches the
vertical line of the robot with colour call. In this scenario, r1 moves vertically in such a way such that
it has either HC

U(r1) ∩ LI(r1) or HC
B (r1) ∩ LI(r1) has no other robot and then moves left to the empty

grid point. So, during horizontal or vertical movement of robots with colour moving1, no collision
occurs. Hence the result. �
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Figure 13. r sees a robot with colour moving1 onLV (r) and sees all robots onRI(r)with colour off. r′ does not see any robot
with colour moving1 or reached onLV (r′).

Lemma 3.9: If at time T, two robots r and r′ have colour call on the same vertical line and there is no
robot on K ∩RI(r), then there exist T ′ > T such that both r and r′ are with colour reached atC(T ′).

Proof: Let r and r′ be two robots with colour call at time T on same vertical line LV(r) (i.e. LV(r′)).
Then RI(r) must be symmetric with respect to K. Also, there is no robot on K ∩RI(r). So, no robot
with colour off onRI(r) changes its colour to leader1. Now in this scenario, the robots which are
closest to K on RI(r) change their colours to moving1. Note that a robot with colour off also can
change its colour to moving1 if it sees another robot with colour moving1 on the same vertical line.
Also, no robot with colour moving1 moves unless it is terminal on the same vertical line. Hence we
can say that at least all robots of above or below K onRI(r) change their colours to moving1. Now
by Algorithm 1, the terminal robots with colour moving1move to LV(r). Then next robot becomes
terminal and do the same. So, after a finite time say T1 > T , all robots with colour moving1 onRI(r)
move toLV(r). In this moment, all robots ofRI(r) have colour off. Note that in this scenario, at least
one of r or r′must see a robotwith colourmoving1 on the same vertical line upon activation.Without
loss of generality, let r sees a robot with light moving1 on LV(r) and all robots onRI(r) have colour
off (Figure 13). Then r changes its colour to reached at time say T2 ≥ T1 ≥ T (Figure 14). Nowwhen
r′ activates, it sees r with colour reached on LV(r′) and changes its colour to reached at a time
T3 ≥ T2 (here T ′ = T3) (Figure 15). Now itmay be possible due to asynchronous environment that after
r changes its colour to reached at time T2, a robot say r1, onRI(r) changes its colour to moving1.
Then r′ will not change its colour to reached now, even after seeing r with colour reached as all
robots onRI(r′) now do not have colour off. Nowwhen r1 wakes again at a time say T4(≥ T2), it sees
rwith colourreached onLI(r) and changes its colour tooff. Nowwhen r′ wakes again at some time
T ′ ≥ T4 ≥ T2 ≥ T1 > T , it changes its colour to reached. Note that r does not change its colour from
reached to candidate before r′ wakes and changes its colour to reached as it will not see any
other robot with colour reached or candidate onLV(r) before r′ wakes. So, we can conclude that
∃T ′ > T when both r and r′ have colour reached.

�

Lemma 3.10: If a robot r changed its colour to reached at some time T > 0, then ∃T ′ ≥ T such that all
robot inRI(r) inC(T ′) have colour off.

Proof: During the look phase, rmust have seen robots onRI(r) have colour off. Now if no robot on
RI(r) change its colour to moving1 in between the completion of look phase of r and time T, then
T ′ = T . Now if a robot, say r1 changes its colour to moving1 in between completion of look phase
of r and time T, then there exists T ′ > T when r1 sees a robot with colour reached on LI(r1) and so
changes its colour to off. Note that before r1 changes its colour to off, r does not change its colour
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Figure 14. r changes its colour to reached.

Figure 15. Now r′ sees r with colour reached on LV (r′) and all robots onRI(r′) with colour off. So, r′ changes its colour to
reached.

as it sees r1 with colour moving1 onRI(r). So, we can conclude ∃T ′ ≥ T such that all robots onRI(r)
have colour off in C(T ′). �

Lemma3.11: If at time T, a robot changes its colour toleader1 fromoff, thenC(T ′)has no robotwith
colour candidate or terminal1, where T ′ ≥ T.

Proof: If r changes its colour to leader1 from off at some time T, then it must have seen exactly
two robots say r1 and r2 with colour call on LI(r) at a time T1 where T1 < T (Figure 16). Note that a
robot can only have colour call at some time T2 if it had colour candidate at some time T3 < T2.
Also, a robot can change its colour to candidate from terminal1 only if it sees there is no other
robot on its left open half. Also, a robot with colour off changes to colour terminal1 only if its left
open half empty, there is no robot with colour leader1 onRI(r1) or on LV(r1) and it is terminal on
LV(r). Since during the whole execution of Phase 1, no other robot having colour off except r1 and
r2 can see its left open half empty and find themselves to be terminal, no other robot except r1 and r2
can change their colours to terminal1. Now upon activation again at any time T4 > T , both r1 and
r2 sees r on RI(r1) with colour leader1 and change their colours to off (Figure 17). Observe that
after time T4, r1 and r2 can never change their colour to terminal1 and hence to candidate as
they will see r with colour leader1 onRI(r1) or on LV(r1) or r1 and r2 would have its left open half
non-empty. So, we can conclude the lemma. �

Lemma 3.12: If at a time T, a robot r changed its colour to leader1, then there will be no robot with
colour reached inC(T ′),where T ′ ≥ T.
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Figure 16. r1 and r2 with colour call both see r with colour leader1 onRI(r1) ∩ K .

Figure 17. Both r1 and r2 change their colours to off after seeing r.

Proof: Note that a robot can only change its colour to reached at a time T if ∃T1 < T such that the
robot had colour candidate in C(T1). Now if r changed its colour to leader1 from candidate,
then even if there is another robot say r′ with colour candidate on LV(r) (Figure 18), r′ will change
its colour to off upon first activation at a time T2 > T . So, the configuration now has no robot with
colour candidate or reached (as both r and r′ with colour candidatewho could have changed
their colour to reached changed it to leader1 and off) (Figure 19). Also, note that during the
period between T and T2, the configuration does not have colour reached as in this time r has colour
leader1 and r′ has colour candidate. Also, no other robot with colour off will ever change its
colour to candidate after time T2 as a robot say r1 with colour off or terminal1 either sees r
with colour leader1 on LV(r1) or onRI(r1) or it has its left open half non-empty. And since a robot
can only change its colour to reachedwhen it had colour candidate before, there will be no robot
with colour reached in C(T ′), where (T ′ ≥ T).

Now, if r has changed its colour to leader1 from off at time T, then rmust have seen two robots
say, r1 and r2 onLI(r)with colourcall at some time T1 < T . Now upon activation after time T, both r1
and r2 see r onRI(r1) and turn their colours tooff. Now for r1 and r2 to ever have the colourreached
again must have colour candidate first. But by Lemma 3.11, after r changes its colour to leader1,
the configuration can never have a robot with colour candidate. Hence,C(T ′) (T ′ ≥ T) has no robot
with colour reached if r changed its colour to leader1 at time T. �

Lemma 3.13: At any time T, there can be atmost one robot with colourleader1 and atmost one robot
with colour leader in the configuration.
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Figure 18. r′ with colour candidate sees r with colour leader1 onLV (r′).

Figure 19. r′ changes its colour to off. Now, no other robot changes colour to terminal1 and hence to candidate and
hence to reached.

Proof: Note that by Lemma 3.5, a robot can change its colour to leader1 only from the colour off
or candidate. Let us consider the following cases:

Case-I: Consider the case where a robot changes its colour to leader1 from the colour
candidate. Now from Theorem 3.2, for any initial configuration C(0), there exist a time T such
that C(T) has either one robot with colour leader1 who has changed its colour to leader1 from
candidate or two robots with colour candidate on the same vertical line.

Case-I(a): Let r is a robot with colour leader1 in C(T) who has changed its colour from
candidate. We claim that in C(T ′) where T ′ ≥ T , there is no other robot who changes its colour
to leader1. For this, we first show that no other robot with colour terminal1 ever change their
colour to candidate. This is because no other robot with colour terminal1 will find its left open
half empty (as the robot with colour leader1 is there) (Figure 20). So C(T ′), where T ′ ≥ T , will not
have any robot with colour candidatewho can change further to leader1. Also observe that after
at T ′ ≥ T , no other robot with colour off changes its colour to leader1 as they will not see any
robot with colour call on their left immediate occupied vertical line. This is also for the reason that
C(T ′)where T ′ ≥ T will not have any other robot with colour candidatewho can change its colour
to call further. So, there will be exactly one robot with colour leader1 which eventually changes
its colour to leader.
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Figure 20. r′ with colourterminal1 sees rwith colourleader1 onLI(r′). So, r′ does not change its colour as it does not have
its left open half empty.

Figure 21. r2 with colour candidate sees r with colour leader1 onLV (r2). No robot with colour call in the configuration.

Case-I(b): Letusnowassume the casewhere there are two robots r1 and r2 with colourcandidate
both on the same vertical line LV(r1)(i.e. LV(r2)). In this case, we will first show that both r1 and r2
can not change their colour to leader1. Then we will show if one of r1 or r2 changes its colours to
leader1, then no other robot with colour off changes its colour to leader1.

In this case, r1 and r2 check the symmetry of the lineRI(r1)(i.e.RI(r2)). IfRI(r) is asymmetric, then
the robot (r1 or, r2) whichever is on the dominant half changes its colour to leader1. Without loss
of generality. let at some time T1, r1 changes its colour to leader1 from candidate. Then r2 must
have colour candidate in C(T1) (Figure 21). Now when r2 wakes again at a time say T2 > T1, it sees
r1 with colour leader1 onLV(r2) and changes its colour to off (Figure 22). Note that between time
T1 and T2 even if r1 awakes again, it does not move as it sees r2 with colour candidate on LV(r1).
Now even if r2 is terminal with colour off and has left open half empty, it would not change its colour
toterminal1 and then tocandidate again as it sees r1 with colourleader1 on the same vertical
line. So, between two robots with colour candidate only one can change its colour to leader1.

Now a robot say r with colour off can never change its colour to leader1 as it would not see
exactly two robots with colour call on LI(r). This is because a robot can only change its colour to
call from colour candidate and no other robot with colour off will ever change its colour to
terminal1 and then to candidate as in this case even if a robot with colour off has its left open
half empty and is terminal on its vertical line, it will see r1 with colour leader1 on the same vertical
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Figure 22. r2 changes its colour to off. No robot with colour call in the configuration and no other robot with colour off
changes colour to terminal1 and hence to candidate and hence to leader1 or call.

line (Figure 22). So, it would not change its colour to terminal1. So, if a robot changes its colour to
leader1 from candidate, then no other robot will change its colour to leader1.

Case-II: Next we show that if a robot say r has changed its colour to leader1 from off, then no
other robot with colour candidate or off ever changes its colour to leader1.

Let r changed its colour to leader1 from colour off at some time T2. This implies r must have
seen exactly two robots say r1 and r2 with colour call on LI(r) and r is on K ∩ LV(r). Also C(T2)
has no robot with colour candidate (Figure 23). We will now show that no robot will ever change
its colour to candidate again. Now when r1 and r2 wake again (lets say at time T ′2 > T2), it sees r
with colour leader1 onRI(r1) and so change their colours to off (Figure 24). Observe that, in this
scenario there is no robot with colour reached and terminal1 in the configuration C(T ′2) and no
robotwith colouroffwill ever change its colour toterminal1 and then tocandidate eventually.
This is because even if a robot with colour off finds its left open half empty and it is terminal on its
vertical line, it sees r with colour leader1 on its right immediate vertical line or on its own vertical
line. So after time T ′2, the configuration has no robot with colour candidate, so no robot with colour
call or reached. Thus if r changed its colour to leader1, no other robot can change its colour to
leader1 from candidate.

Again this scenario, all robots with colour off are either on HC
R (r) or on LI(r). Note that all robots

with colour off that are onLI(r), never change their colours as they either see r on their right imme-
diate vertical line or on the same vertical line or they find their left open half is non-empty. Similarly,
the robots with colour off on HC

R (r) never change their colours again as they find their left open half
non-empty, never see exactly two robots with colour call on their left immediate vertical line and
never sees a robot with colour moving1 on their same vertical line. So, we have proved if a robot has
changed its colour to leader1 from colour off, no other robot ever changes its colour to leader1
again.

So, from all the cases, it is evident that in Phase 1 any configuration can have atmost one robotwith
colour leader1 and since a robot changes its colour to leader from leader1 only, there can be
at most one robot with colour leader in any configuration during Phase 1. �

Lemma 3.14: If a robot r changes its colour to leader1 at a time T and no robot with colour
terminal1 changes its colour to candidate at T ′ where T ′ ≥ T , then robots onRI(r) in C(T) never
move in Phase 1.
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Figure 23. r1 and r2 with colour call see r with colour leader1 on RI(r1). No robot with colour candidate in the
configuration.

Figure 24. r1 and r2 change their colour to off. No robot with colour reached or terminal1 or candidate or call in
the configuration and no other robot with colour off changes colour to terminal1 and hence to candidate and hence to
leader1 or call or directly to leader1.

Proof: Let r changes its colour to leader1 from colour off at a time T. Observe that in this case, r
must have seen two robots say r1 and r2 with colour call at some time T1 < T and it is on K ∩RI(r1).
Note that in this case, all robots onRI(r) have colour off, so they do not move. Now upon activation
after time T, both r1 and r2 change their colours to off and never change their colours again as they
see r with colour leader1 on LV(r1) or onRI(r1) or other robots on their left open half throughout
completion of Phase 1. So, robots onRI(r)(at T) never see any robot with colour call and also, they
do not see their left open half empty after time T. Thus robots onRI(r) at time T never change their
colours and never move until completion of Phase 1.

Now if r changes its colour from candidate to leader1 at time T and no robot with colour
terminal1 changes its colour to candidate at some time T ′ where T ′ ≥ T , then all robots which
are on RI(r) in C(T) can have colour either moving1 or off or, terminal1. Note that the robots
with colourmoving1will notmove as it does not see any robotwith colourcallon its left immediate
vertical line or, robot with colour reached on its same vertical line and on its left immediate vertical
line. Similarly robots with colour off onRI(r) does not change its colour if it wakes after T as it finds
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out that it has its left open half non-empty and there is no robotwith colourcallon its left immediate
vertical line. Note that a robot with colour terminal1 may change its colour to off but after that
this robot with colouroffwill notmove by similar argument above. So, no robot onRI(r) evermoves
after time T until Phase 1 is complete. �

Lemma 3.15: If a robot r changes its colour to leader1 from candidate at some time T and another
robot r′ changes its colour to candidate at a time T ′ where T ′ ≥ T , then no collision occurs even if both
r and r′move.

Proof: Let r changes its colour to leader1 from candidate at a time T and r′ changes its colour
to candidate from colour terminal1 at a time T ′ ≥ T . Note that at time T, r must be singleton
onLV(r). This implies there is a time T1 < T when r had colour off and was terminal on L1 in C(T1).
Nowwhen rwakes at a time say T2, where T1 ≤ T2 < T , it changes its colour to terminal1 and there
exist a time T3 > T2 ≥ T1 and T3 < T such that r changes its colour to candidate and moves left
and become singleton on LV(r). We claim that r′ changes its colour to candidate only if r′ was on
LV(r) in C(T2) and it was also terminal on LV(r) (i.e. LV(r′)) as otherwise r′ can not see its left open
half empty. Now, let r′ wakes before time T2 and decide to changes its colour to candidate but it
changes its colour at a time T ′ ≥ T and has a pending move. Then observe that now r and r′ are on
two different vertical lines and r′ has a pending move to the left. So, if there are other vertical lines
in between LV(r) and LV(r′), then even if both of them move, no collision occurs as r can only move
either vertically or on left and they are on different horizontal line. So, let us consider r′ is on lnext(r).
Then r can not move vertically as lnext(r) is non-empty. Hence, both r and r′ move left and no collision
occurs as r and r′ are on different horizontal lines. �

Now, from the above lemmas and the discussions, we can conclude the following theorem.

Theorem3.16: Forany initial configurationC(0), thereexistsaT> 0such thatC(T)hasexactlyone robot
with colourleader and it’s left closed half and one of upper and bottom closed half have no other robots.

3.2. Phase 2

After completion of Phase 1, the configuration has exactly one robot r0 with colour leader such that
r0 is singleton on HC

L (r0) and also singleton on LH(r0) and there is no other robot on either below
or above LH(r0). Note that in this configuration, all the robots who can see r0 can agree on a global
coordinate. Let r1 be a robot which can see r0. Then it assumes the position of r0 as the coordinate
(0,−1). Now since all robots agree on the direction and orientation of the x-axis (i.e. the horizontal
lines), r1 can think of the horizontal line let’s sayHwhich is just above r0 as the x-axis where right half
of the line ofLV(r0) correspond to the positive direction of x-axis. Now r1 agrees on the the vertical line
LV(r0) as y-axis. Note that r1 can also know the orientation of y-axis by assuming its own y−coordinate
to be greater or equals to the y−coordinate of r0 (i.e. if HC

U(r0) has robots, then the direction of LV(r0)
from r0 towards HC

U(r0) ∩ LV(r0) is the direction of positive y−axis and similar for the case if HC
B (r0)

has robots) (Figure 25). In this phase, robots first form a line and then from that line move to their
corresponding target positionswhich are embedded in thegrid assuming theglobal coordinatewhich
has been agreed upon by robots after seeing r0. Thus the pattern formation is done. We provided a
detailed description of the algorithm for Phase 2.

3.2.1. Line formation
In the beginningof Phase2, if a robot r sees r0 with colourleader1, it agrees on aglobal coordinate as
mentioned above and find that r0 is onHO

B (r). Now, if r sees there is no robot inHO
B (r) ∩ HO

U(r0) (i.e. there
is no horizontal line containing any robot between LH(r0) and LH(r)) and r is leftmost on LH(r) and
also if it finds there are i other robots on (1,−1), (2,−1), . . . , (i,−1) and no robot with colour done,
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Figure 25. r0 with colour leader is at (0,−1). Any robot that sees r0 can agree on a global coordinate system as shown in this
diagram.

Algorithm 2: APFFATGRID: Phase 2
1 r←myself
2 r0 ← the robot with light leader
3 if r.light = moving1 or candidate or terminal1 then
4 if (r0 ∈ HO

B (r)) and (r is leftmost onLH(r)) and (there is no robot in HO
B (r) ∩ HO

U(r0)) then
5 if there are i robots onLH(r0) other than r0 at (1,−1), . . . , (i,−1) then
6 r.light← off
7 move to an empty grid point towards (i+ 1,−1) by GOTOLINE

8 else if r.light = off then
9 if (r0 ∈ HO

B (r)) and (r is leftmost onLH(r)) and (there is no robot in HO
B (r) ∩ HO

U(r0)) then
10 if there are no robots onLH(r0) other than r0 then
11 if there is a robot with light done then
12 if r is at tn−2 then
13 r.light← done
14 else
15 move to an empty grid point towards tn−2 by GOTOTARGET

16 else
17 move to (1,−1) by GOTOLINE

18 else if there are i robots onLH(r0) other than r0 at (1,−1), . . . , (i,−1) then
19 move to a empty grid point towards (i+ 1,−1) by GOTOLINE

20 else if there are i robots onLH(r0) other than r0 at (n− i,−1), . . . , (n− 1,−1) then
21 if r is at tn−i−2 then
22 r.light← done
23 else
24 move to an empty grid point towards tn−i−2 by GOTOTARGET

25 else if r0 ∈ LH(r) and HO
U(r) has no robots with light off then

26 if r is at (i,−1) then
27 move to (i, 0)

28 else if r.light = leader then
29 if all robots, which are visible to r, have lightdone then
30 if r is at tn−1 then
31 r.light← done
32 else
33 move to an empty grid point towards tn−1 by LEADERMOVE
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Figure 26. Movement of r3 toLH(r0) by executing the method GOTOLINE().

then it changes its colour to off (if r has colour off, it would not change the colour) and moves
to (i+ 1,−1) by a method GOTOLINE(). The method GOTOLINE() is described as follows. In this method,
if r is above the horizontal line where y = 0, then it moves vertically downwards until it reaches the
line where y = 0. Note that no collision occurs during this vertical movement as there are no robots
betweenLH(r) andLH(r0) and no other robot will move until it reaches at (i+ 1,−1). This is because
other robots even if gets activated before r reaches (i+ 1,−1), sees r between its horizontal line and
LH(r0). Now, when r is at the horizontal line where y = 0, it moves horizontally to the position (i+
1, 0). Note that the horizontal line y = 0 may not be initially empty at the beginning of Phase 2. Also,
initially all robots on line y = 0 have x−coordinate> 0. Now let at some time T, the robot r which is
leftmost on the line y = 0 sees robots on (1,−1), (2,−1), . . . (i,−1). Now if there is no other robot
except r on line y = 0 and r is not on (i+ 1, 0), then r can simply move horizontally without collision
to reach (i+ 1, 0). Note that during this movement, no other robot from above moves as they see r
in HO

B (r) ∩ HO
U(r0). Now if there are other robots on the line y = 0 other than r, then this implies r has

x−coordinate> i. This is because the i robots say r1, r2, . . . , ri must have reached their current position
at (1,−1), (2,−1), . . . (i,−1) from the line y = 0 and all robots on line y = 0 have x − coordinate > 0.
Now since r has x−coordinate> i, r will move to its left until it reaches (i+ 1, 0). Note that during this
movement, no collision occurs as r is leftmost robot on LH(r) and no other robot on LH(r) moves as
they are not leftmost onLH(r). Next after r reaches theposition (i+ 1, 0), itmoves vertically downward
to (i+ 1,−1) (Figure 26). So after a finite time, all robots will reach on the line y = −1 in such a way
that there is no empty grid point between two robots on the line y = −1 (Figure 27). From the above
discussion, we have the following Lemmas 3.17 and 3.18.

Lemma3.17: Duringmovement of a robot r, that is executing themethod GOTOLINE() in Phase 2, r does not
collide with any other robot in the configuration.

Lemma 3.18: There exists a T> 0 such that C(T) has one robot with light leader and all other robots
with light off in same horizontal line.

Lemma 3.19: The leftmost robot r of a horizontal line can always see all the robots on the horizontal line
y = −1 if there is no robot inHO

B (r) ∩ HO
U(r0),where r0 is the robotwith colourleaderon the line y = −1.

Proof: Let r be the leftmost robot on a horizontal line y = s where s> 0. Then it is obvious that r
will see all robots on y = −1. Now if r is on y = 0 and is singleton, then also it is obvious that r can
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Figure 27. All robots formed a line onLV (r0). There is no empty grid point between any two robots on the line.

Figure 28. The target pattern embedded in the coordinate system.

see all robots on y = −1. Now if r is not singleton on y = 0. Then from the discussions above, it is
clear that x−coordinate of r> x−coordinate of rightmost robot on y = −1. So, r can see all robots on
y = −1. �

3.2.2. Target pattern formation
After the line is formed, all the robots except r0 with colour leader on (0,−1) have colour off and
they are all placed on the horizontal line y = −1 in such a way that r0 is the leftmost robot on y = −1
and any two robots do not have any unoccupied grid points between them. Now, the target pat-
tern is embedded on the grid (based on the global coordinate system described above) such that
x−coordinate, y−coordinate of any target position say, ti is greater than 0. Also, the target position of
robot with colour leader, tn−1 is on line y = 1. And for any two other robots, let there be two target
positions ti and tj . If both ti and tj are on the same horizontal line and i< j, then ti is at the right of tj .
Also, if ti and tj are on two different horizontal lines and i< j, then ti is on the above horizontal line
(Figure 28).

Note that a robot say r who can see the robot r0 with colour leader can agree on the global coor-
dinate system as described earlier. So, r can agree on its target position which is embedded target
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Figure 29. r1 and r2 alreadymoved to their target position and changed their colour todone. r3 sees r0 with colourleader and
moves to line y = 0 by moving vertically.

positions on the grid. Now a robot r, who can see r0 and has coordinate (s,−1) on LH(r) and sees
HO
U(r) has no robot with colour off, moves to position (s, 0) (Figure 29). Now, r can see all robots on

LH(r0) as r is singleton on y = 0. Now, if r finds out that there are i robots on LH(r0) other than r0
at the positions (n− i,−1), (n− i− 1,−1), . . . (n− 1,−1), then r moves to tn−i−2 by a method GOTO-

TARGET() (Figure 30) and changes its colour to done. The method GOTOTARGET() is described as follows.
When executing the method GOTOTARGET(), a robot r first moves vertically to the horizontal line that is
just below the horizontal line of its target location say tr . Note that during this movement, no other
robot onLH(r0)moves even if they see r0 as they see rwith colour off on their upper open half. Now,
let coordinate of tr be (xtr , ytr ). Note that after the vertical movement, r is now singleton on the line
y = ytr − 1. Now, if r is not already on the position (xtr , ytr − 1), it moves horizontally to the position
(xtr , ytr − 1). Note that since r is singleton on y = ytr − 1 and no robot fromLH(r0) has started its ver-
tical movement (this is because they still see r with colour off on their upper open half), no collision
occurs during this movement by r. Nowwhen r reaches the position (xtr , ytr − 1), it moves above once
and reaches the designated target position tr of r. Observe that the last robot say rn−1 on (n− 1,−1)
(i.e. on LH(r0)) sees no other robot except r0 on LH(r0) after it starts moving vertically above. Now,
the problem is if it can distinguish whether rn−1 is meant to execute GOTOLINE() or GOTOTARGET() when it is
above the lineLH(r0). Note that rn−1 will see at least one robot having colour done above it or on the
same line while it is meant to execute GOTOTARGET() as n > 2 =⇒ n− 1 > 1 which impliesLH(r0) had
at least one other robot rn−2 between r0 and rn−1 which already executed GOTOTARGET() and changed its
colour to done before rn−1 started executing GOTOTARGET(). So in this case, rn−1 sees at least one robot
with colour done and moves to its designated target location trn−1 = tn−2. So, we can conclude that
after a finite time, all robots except the robot r0 with colour leadermove to their designated target
locations embedded on the grid as described earlier.

From the above discussion, we can conclude the following lemma.

Lemma3.20: During the executionof themethod GOTOTARGET(), a robot r never collideswith another robot
in the configuration.

Now the robot r0 with colour leader sees that all the visible robots have colour done. So, it now
moves to its designated target location tn−1 by a method LEADERMOVE(). The method LEADERMOVE() is
described as follows. In this method, r0 first moves to (0, 0). Now, let the lowest horizontal line be
Hlast having a robot with colour done. Now, note that r0 can always see the leftmost robot rn−1 on
the horizontal lineHlast . So, r0 can always know its own position on the global coordinate as it knows
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Figure 30. From (3, 0), r3 can see 3 robots on (4,−1), (5,−1), (6,−1) and moves to t2 by executing the method GOTOTARGET().

Figure 31. When all other robots except r0 with colour leader reach their corresponding target positions, r0 moves to t6
executing the method LEADERMOVE().

the target position of rn−1 from the input even if it is not at (0,−1). Now the target was embedded
in such a way that the target position tn−1 of r0 is on line y = 1. Let (xt0 , 1) be the target position of
r0. Now from (0, 0), r0 moves horizontally to the location (xt0 , 0) and then moves vertically once to
tn−1 = (xt0 , 1) and changes the colour to done. Note that below y = 1, there is no other robot while
r0 starts moving (Figure 31). So, we can conclude the following lemma.

Lemma 3.21: While executing the method LEADERMOVE(), a robot r never collides with other robots in the
configuration.

So, from Lemmas 3.17, 3.20 and 3.21, we can directly conclude the following result.

Lemma 3.22: Duringmovement of robots in Phase 2, no collision occurs.

Now from the above lemmas and the discussions, we can now finally conclude the following
theorem.

Theorem3.23: There exists a T> 0 such thatC(T) is a final configuration similar to the givenpattern and
has all robots with light done (Figure 32).
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Figure 32. After r0 reaches t6, it changes its colour done and the target pattern has been formed.

4. Conclusion

The problem of arbitrary pattern formation (APF ) is a widely studied area of research in the field of
swarm robotics. It has been studied under various assumptions on plane and discrete domain (e.g.
infinite regular tessellation grid). With obstructed visibility model, this problem has been considered
on plane and infinite grid using luminous opaque robots. But using fat robots (i.e. robots with certain
dimensions), it is only done in plane. In this paper, we have taken care of this. We have shown that
with a swarm of luminous opaque fat robots having one-axis agreement on an infinite grid, any arbi-
trary pattern can be formed from an initial configurationwhich is either asymmetric or has at least one
robot on the line of symmetry using one light having 9 distinct colours which are less than the num-
ber of colours used to form an arbitrary pattern on plane using opaque and fat robots with one-axis
agreement. For future courses of research, it would be interesting to see if the same problem can be
solved using less number of colours under the same assumptions.
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